New Products and Solutions

Spring 2020 Edition

VISIT ANALOG.COM

AHEAD OF WHAT'S POSSIBLE™
Overview

Analog Devices is a leading global, high performance analog technology company dedicated to solving the toughest engineering challenges. We enable our customers to interpret the world around us by intelligently bridging the physical and digital with unmatched technologies that sense, measure, power, connect, and interpret. Our powerful suite of products and solutions adds value across the entire signal chain. In this Spring 2020 edition of the New Products and Solutions guide, you will find select new product innovations including isolation, power management, precision, RF and microwave, sensors and MEMS, and reference designs for use across a wide range of markets and applications. You can also stay up-to-date on the latest news from ADI by subscribing to one of our email newsletters.

myAnalog

Sign up via myAnalog at my.analog.com.

Contents

Isolation
Quad-Channel Isolators with Integrated DC-to-DC Converter

3 RF and Microwave
Dual-Mode, Ka-Band Upconverter

Power
Ultralow Noise, Ultrahigh PSRR Precision DAC/Reference Buffer

Low IQ Boost/SEPIC/Inverting Converter with 1.5 A, 150 V Switch

Dual-Channel, Synchronous Step-Down Silent Switcher® 2 Devices

4 Sensors and MEMS
Precision, Miniature MEMS IMUs

7 Precision
±0.1°C Accuracy, 16-Bit, Digital I2C Temperature Sensor

8 Reference Designs
Analog I/O System with HART® and Modbus Connectivity

9 Electrochemical Impedance Spectroscopy (EIS) for Batteries

Products by Market

Large blue circles indicate the primary markets and the small blue circles indicate the secondary markets.

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Part Number</th>
<th>General-Purpose*</th>
<th>Aerospace and Defense</th>
<th>Automotive</th>
<th>Building and Infrastructure</th>
<th>Communications</th>
<th>Consumer</th>
<th>Energy</th>
<th>Healthcare</th>
<th>Industrial Automation</th>
<th>Instrumentation and Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolation</td>
<td>ADuM6420A/ADuM6421A/ADuM6422A</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>LT3040</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LT8365</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LT8652S/LT8653S</td>
<td></td>
</tr>
<tr>
<td>Precision</td>
<td>ADT7422</td>
<td></td>
</tr>
<tr>
<td>RF and Microwave</td>
<td>ADMV4530</td>
<td></td>
</tr>
<tr>
<td>Sensors and MEMS</td>
<td>ADIS16500/ADIS16505/ADIS16507</td>
<td></td>
</tr>
<tr>
<td>Reference Design</td>
<td>CN-0435</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN-0510</td>
<td></td>
</tr>
</tbody>
</table>

*Intended for use in a broad range of markets.
ADuM6420A/ADuM6421A/ADuM6422A: Quad-Channel Isolators with Integrated DC-to-DC Converter

These devices are quad-channel digital isolators with an isoPower®, integrated, isolated dc-to-dc converter. Based on iCoupler® technology, the dc-to-dc converter provides regulated, isolated power that meets CISPR 32/EN 55032 Class B limits at a full load on a 2-layer printed circuit board (PCB) with ferrites. They eliminate the need for a separate, isolated dc-to-dc converter in 500 mW, isolated designs. The iCoupler chip scale transformer technology is used for isolated logic signals and for the magnetic components of the dc-to-dc converter. The result is a small form factor, total isolation solution.

Features and Benefits

► Class B radiated emissions on a 2-layer PCB
► Four high speed data channels with high common-mode transient immunity (CMTI)
► Wide logic side input voltage range and high temperature operation of 125°C

Applications

► Automotive
► Instrumentation
► Industrial automation
► Healthcare

ADuM6420A: 4:0 directionality
ADuM6421A: 3:1 directionality
ADuM6422A: 2:2 directionality
Power

LT3040: 20 V, 200 mA, Ultralow Noise, Ultrahigh PSRR Precision DAC/Reference Buffer

The **LT3040** is a high performance, robust voltage output reference/DAC buffer that employs a unique architecture that seeks to maintain the precision and accuracy of the reference or DAC while sourcing up to 200 mA. It features ADI’s ultralow noise and ultrahigh PSRR architecture for powering noise sensitive, high accuracy systems. Designed as an advanced voltage buffer for voltage output references/DACs, the LT3040 features extremely low 1/f noise, very low wideband noise, excellent PSRR over a wide frequency range and low dropout performance—a typical 350 mV dropout at 200 mA of source current.

Features and Benefits

- Excellent wideband noise filtering, ideal for postregulating high speed switching supplies
- Retains the noise performance of front-end, high precision references
- More headroom and higher efficiency

Applications

- Instrumentation: high precision voltage references or very low noise instrument
- General-purpose: powering or buffering high speed/high precision data converters

LT3040 evaluation board

12-lead MSOP

10-lead DFN
Power

LT8365: Low I\textsubscript{o}, Boost/SEPIC/Inverting Converter With 1.5 A, 150 V Switch

The **LT8365** is a current-mode dc-to-dc converter with a 1.5 A, 150 V switch operating from a 2.8 V to 60 V input. With a unique single feedback pin architecture, it is capable of boost, SEPIC, or inverting configurations. Burst Mode® operation consumes as low as 9 µA quiescent current to maintain high efficiency at very low output currents, while keeping typical output ripple below 15 mV. An external compensation pin allows optimization of loop bandwidth over a wide range of input and output voltages and programmable switching frequencies between 100 kHz and 500 kHz. The LT8365 is available in a thermally enhanced 16-lead MSOP package with four pins removed for high voltage pin spacings.

Features and Benefits

- 150 V, 1.5 A internal switch delivers high boost, SEPIC, and inverted voltages
- Positive or negative output voltage programming with a single feedback pin minimizes the application circuit footprint and complexity
- Spread spectrum frequency modulation reduces EMI

Applications

- Automotive: ±250 V APD bias supply for LIDAR
- Instrumentation: high voltage DAC or high voltage op amp bias supplies
- Healthcare: vascular imaging
- Industrial automation: laser bias and light analysis, laser monitors

![LT8365 evaluation board](image)

![Thermally enhanced, 16-lead MSOP](image)
Power

LT8652S/LT8653S: Dual-Channel, Synchronous Step-Down Silent Switcher 2 Devices

These devices feature the second generation Silent Switcher architecture to minimize EMI emissions while delivering high efficiency at high switching frequencies. This architecture includes integration of bypass capacitors to optimize high frequency current loops and make it easy to achieve advertised EMI performance by eliminating layout sensitivity. The fast, clean, low overshoot switching edges enable high efficiency operation even at high switching frequencies, which enables a wide control loop bandwidth for fast transient response.

- **LT8652S**: 8.5 A, 18 V, 16 µA IQ
- **LT8653S**: 2 A, 42 V, 6.2 µA IQ

Features and Benefits

- Silent Switcher 2 architecture: internal bypass capacitors reduce radiated EMI
- Ultralow quiescent current Burst operation: high efficiency at light load and minimize low output ripple voltage (10 mV p-p)
- Small 4 mm × 7 mm, 36-lead LQFN with dual 8.5 A output or 17 A combined (LT8652S)
- Small 4 mm × 3 mm, 20-lead LQFN with dual 2 A output or 4 A combined (LT8653S)

Applications

- Communications: communication infrastructure applications
- General-purpose: point of load for server and core power
- Industrial automation: building and machine automation

LT8652S evaluation board
ADT7422: ±0.1°C Accuracy, 16-Bit, Digital I2C Temperature Sensor

The ADT7422 contains an internal band gap reference, a temperature sensor, and a precision analog-to-digital converter (ADC). The device provides a 16-bit temperature result with a resolution of 0.0078°C and an accuracy of up to ±0.1°C across the temperature range of 25°C to 50°C without the need for calibration after the PCB soldering process. Operating at 3.0 V, the average supply current is typically 210 μA. The ADT7422 has a shutdown mode that powers down the device and offers a shutdown current of typically 2.0 μA at 3.0 V.

Features and Benefits

► 0.1°C accuracy specification enables end product to measure temperature with accuracy that was only possible for thermistors and RTDs
► Doesn’t require external circuity: smaller, lower power, and lower cost than older sensing technologies
► Fully tested and calibrated solution: doesn’t require system calibration to achieve desired 0.1°C measurement precision

Applications

► Healthcare: vital signs monitoring, glucose meters, incubators
► Consumer: vital signs monitoring
► Instrumentation: CJC, cold junction compensation for thermocouples, temperature control of cooling systems or industrial ovens, environmental sensing, water quality measurements

ADT7422 evaluation board

4 mm × 4 mm, 16-lead LF CSP
ADMV4530: Dual-Mode, Ka-Band Upconverter with Integrated Fractional-N PLL and VCO

The ADMV4530 is a highly integrated upconverter with an in phase/quadrature (I/Q) mixer. An integrated low phase noise, fractional-N phase-locked loop (PLL) with a voltage controlled oscillator (VCO) and internal 2× multiplier generate the necessary on-chip local oscillator (LO) signal for the I/Q mixer, eliminating the need for external frequency synthesis. The VCO uses an internal autocalibration routine that allows the PLL to select the necessary settings and locks in approximately 100 µs. The single-ended reference input to the PLL operates up to 500 MHz and features internal reference dividers and a multiplier for added flexibility.

Features and Benefits

► High performance integrated fractional-N PLL gives excellent EVM
► Supports both IF mode and I/Q mode
► High output power eliminates the need of an external driver amplifier

Applications

► Satellite communications: commercial, aerospace and defense VSAT
► Point-to-point microwave communication

8 NEW PRODUCTS AND SOLUTIONS
Sensors and MEMS

ADIS16500/ADIS16505/ADIS16507: Family of Precision, miniature MEMS IMUs

The ADIS1650x are precision, miniature microelectromechanical system (MEMS) inertial measurement units (IMUs) that include a triaxial gyroscope and a triaxial accelerometer. Each inertial sensor in the ADIS1650x family combines with signal conditioning that optimizes dynamic performance. The factory calibration characterizes each sensor for sensitivity, bias, alignment, linear acceleration (gyroscope bias), and point of percussion (accelerometer location). As a result, each sensor has dynamic compensation formulas that provide accurate sensor measurements over a broad set of conditions.

Features and Benefits

- Fully calibrated bias, sensitivity, and alignment over industrial temperature range simplify customer integration, calibration, and inertial frame alignment
- Excellent vibration rejection in z-axis gyroscope: vibration-proof primary steering axis in ground-based autonomous vehicles
- 63% reduction in headroom requirement for customer system boards at height of 5.6 mm

Applications

- Aerospace and defense
- Industrial automation: autonomous vehicles, drones, robots, guidance, navigation, control, GNC, stabilization

![ADIS16507 evaluation board](image)

ADIS16507

- cost-optimized, ±40 g, ±2000 DPS
- ±8 g, three DPS options
- ±40 g, three DPS options
Reference Designs

CN-0435: Analog I/O System with HART and Modbus Connectivity

This solution demonstrates a PLC/DCS system controlled by Modbus, an open industrial protocol, that enables rapid development. Analog inputs and outputs support common analog industrial ranges (0 V to 10 V, ±10 V, 4 mA to 20 mA). Each node can control or measure up to 16 analog field devices, sensors, or actuators, with either HART-compatible or analog-only interfaces. Channels are group isolated for safety, noise immunity, and robustness, while enabling scalable and customizable PLC/DCS system requirements for your application.

Features and Benefits

► PLC/DCS prototyping system, complete with open-source software stack
► Each node supports up to 16 channels of input or output sensors/actuators
► Open wire detection and HART compatible for diagnostics and error checking

Applications

► Industrial automation, factory automation—PLC/DCS systems
Reference Designs

CN-0510: Electrochemical Impedance Spectroscopy (EIS) for Batteries

This is an EIS measurement system for characterizing lithium ion (Li-ion) and other types of batteries. EIS is a safe perturbation technique used to examine processes occurring inside electrochemical systems. The system measures the impedance of a battery cell over a range of frequencies. The data, once analyzed and paired with a proper algorithm, can be used to determine the state of health and state of charge of a battery.

Features and Benefits

- Measures the impedance of battery cell from mHz to kHz
- Arduino shield compatible

Applications

- Instrumentation, test equipment—battery testing

Electric Vehicles

- Instrumentation/Alternative Energy

CN-0510 reference design board
Additional New Products

<table>
<thead>
<tr>
<th>Product Category</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>AD7387 (14-bit)/AD7388 (12-bit)</td>
<td>4-channel, 4 MSPS, dual, simultaneous sampling SAR ADC</td>
</tr>
<tr>
<td></td>
<td>ADE2021 (single)/ADE202 (dual)</td>
<td>Channel, configurable, isolated digital input</td>
</tr>
<tr>
<td>Amplifier</td>
<td>ADCA3992</td>
<td>45 MHz to 121 MHz, CATV power doubler hybrid</td>
</tr>
<tr>
<td></td>
<td>ADL6316</td>
<td>500 MHz to 1000 MHz transmit VGA for use with RF DACs and transceivers</td>
</tr>
<tr>
<td></td>
<td>LT6228 (single)/LT6227 (dual)</td>
<td>1 nV/√Hz 420 MHz GBW, 180 V/µs, low distortion rail-to-rail output op amp</td>
</tr>
<tr>
<td>Analog Functions</td>
<td>LT5401</td>
<td>Matched resistor network for precision amplifiers</td>
</tr>
<tr>
<td>DAC</td>
<td>AD5800</td>
<td>High temperature, 16-bit, unbuffered voltage output DAC, SPI interface</td>
</tr>
<tr>
<td>Interface and Isolation</td>
<td>AD81032</td>
<td>2-channel, isolated micropower management unit with seven digital isolators</td>
</tr>
<tr>
<td>Power Management</td>
<td>LT3083 (200 mA)/LT3094 (500 mA)</td>
<td>-20 V, ultralow noise, ultrahigh PSRR negative linear regulator</td>
</tr>
<tr>
<td></td>
<td>LT4040</td>
<td>High voltage buck-boost battery charge controller with MPPT and I²C</td>
</tr>
<tr>
<td></td>
<td>LTC2948</td>
<td>Current, voltage, and charge monitor for high voltage battery packs</td>
</tr>
<tr>
<td></td>
<td>LTC7818</td>
<td>40 V, low Iq, 3 MHz, triple output buck/buck/boost synchronous controller</td>
</tr>
<tr>
<td></td>
<td>LT8648S</td>
<td>42 V, 15 A synchronous step-down Silent Switcher 2 device</td>
</tr>
<tr>
<td>RF and Microwave</td>
<td>ADIT1107</td>
<td>8 GHz to 18 GHz, front-end IC</td>
</tr>
<tr>
<td>Sensors and MEMS</td>
<td>ADCCXL1021-1</td>
<td>Wide bandwidth, low noise, vibration sensor</td>
</tr>
<tr>
<td></td>
<td>ADXL317</td>
<td>3-axis, ±16 g, PFS digital accelerometer</td>
</tr>
</tbody>
</table>

Design Resources

EngineerZone® Online Support Community
Engage with the Analog Devices technology experts in our online support community. Ask your tough design questions, browse our rich knowledge base, or read about new technologies in one of our blogs.

▶▶ Visit ez.analog.com

Circuits from the Lab Reference Designs
Circuits from the Lab® reference designs are built and tested by ADI engineers with comprehensive documentation and factory-tested hardware.

▶▶ Visit analog.com/cftl

Circuit Design Tools and Calculators
Analog Devices' design tools simplify your design and product selection process through ease of use and by simulating results that are optimized and tested for accuracy.

▶▶ Visit analog.com/designtools

myAnalog
Enhance your analog.com experience with easier to manage PCNs, faster navigation, project collaboration, and more.

▶▶ Visit my.analog.com